

III-4. LOW-LEVEL LIMITING UTILIZING IMPACT IONIZATION IN BULK GERMANIUM AT 4.2°K*

W. W. Heinz and S. Okwit

Airborne Instruments Laboratory, Deer Park, New York

Low-level garnet limiters operating in the coincidence region have previously been reported at 4.2°K (Reference 1). These devices, however, operate only within an octave frequency range, which is a function of the $4\pi M_s$. For YIG at 4.2°K, for example, this frequency range is 2.3 to 4.6 gc. This paper describes the application of impact ionization in bulk semiconductors to obtain low-level limiting, for which no such frequency limit exists in the microwave range.

The limiting mechanism uses the large change in conductivity (several orders of magnitude) experienced in a semiconductor for small variations in electric field in the vicinity of a critical field. This critical field is typically between 4 and 10 volts/cm in n-germanium. Below the breakdown field, the charge carriers are essentially "frozen out" at these low temperatures, and the semiconductor behaves as a dielectric ($\epsilon = 16$ for germanium). As the electric field is increased, a free-carrier multiplication process is caused by impact ionization of impurities by field accelerated carriers. A typical v-i characteristic is shown in Figure 1. Previous experiments (Reference 2) have shown that the current rise time just above the threshold level is of the order of 10^{-8} seconds and decreases as the applied voltage increases. Under pulsed condition (100-mw peak, rise time less than 0.1 μ sec), the germanium limiter had a spike leakage of 5×10^{-3} erg. The spike passed by a ferrite coincidence limiter is typically 0.5 erg under similar conditions.

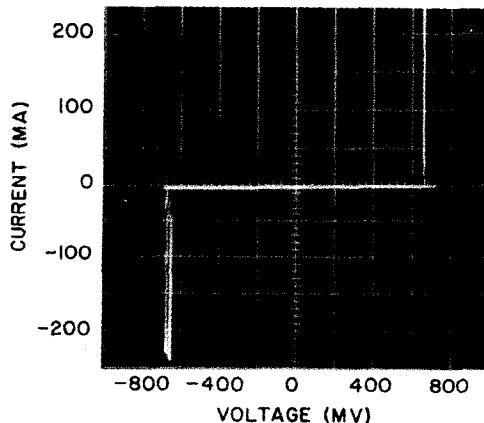


Figure 1. Typical Voltage - Current Characteristic of 0.030-Inch Thick, 1.5-Ohm-cm N-Type Ge Slab at 4.2°K

*This work was supported by the Research and Technology Division, Rome Air Development Center, under Contract No. AF 30(602)-2989.

To obtain low limiting levels, a balanced DC biasing arrangement is used in which the germanium is biased just below the breakdown field. This paper includes a discussion of negative-resistance phenomena due to the presence of acceptors as well as apparent negative-resistance effects due to thermal oscillations. These considerations are important in relation to limiting level since they determine how close to breakdown the bias can be set without causing instability. A discussion of the dependence of the breakdown field and recovery time, on doping is also included. Finally, a general analysis is made of the relationship between limiting level, insertion loss, and bandwidth, based on a simple transmission resonator model.

The devices described include a Stripline structure (Figures 2 and 3) and a ridged-waveguide structure (Figure 4) both of which operate at C-band. A preliminary limiting curve obtained from the latter structure appears in Figure 5. The 3-db bandwidth was 200 mc centered at 3875 mc. Unfortunately, the dynamic range could not be measured due to the power limitation of the available source. On the basis of room-temperature measurements, however, a dynamic range considerably in excess of 30 db is predicted. Work on a resonator having a higher Q is now taking place in order to achieve a projected limiting level of -20 dbm.

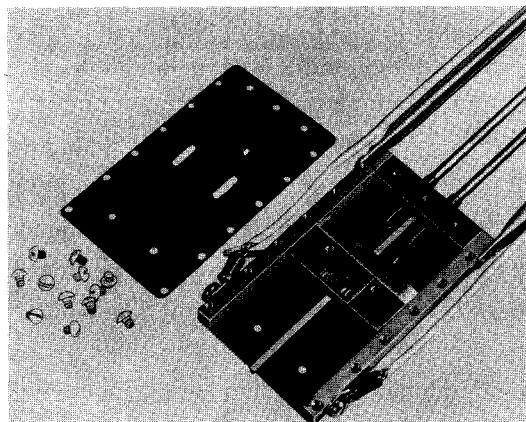


Figure 2. Stripline Resonator with Top Cover Removed

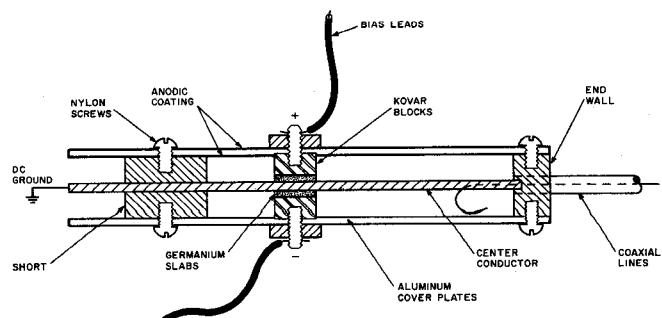


Figure 3. Cross Section of Stripline Resonator Showing Bias Voltage Polarities

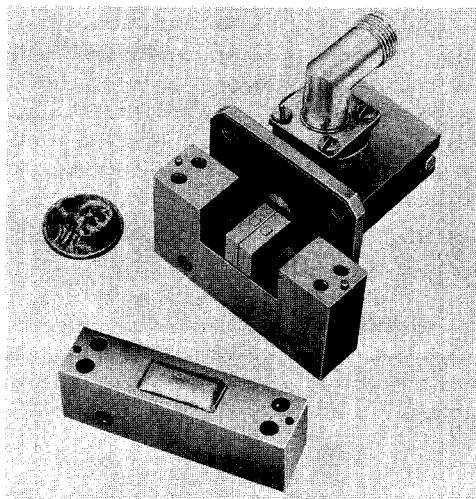


Figure 4. Ridge-Waveguide Structure Showing Waveguide to Coaxial Transition and Coupling Iris

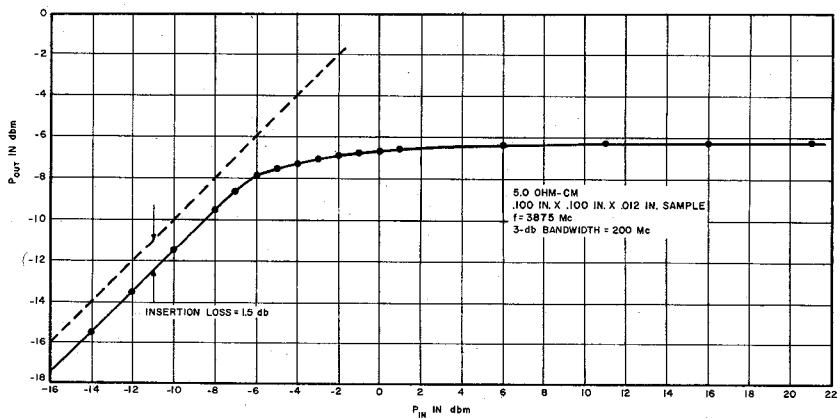


Figure 5. Typical Limiting Curve Obtained from Ridge-Waveguide Resonator

ACKNOWLEDGMENTS

The authors wish to acknowledge the able assistance of H. Levy in the fabrication and in the experimental work.

REFERENCES

1. Sansalone, F. J. and Spencer, E. G., "Low-Temperature Microwave Power Limiter," IRE Transactions, Vol. MTT-9, No. 3, p. 272, May 1961.
2. McWhorter, A. L. and Rediker, R. H., "The Cryosar-A New Low-Temperature Computer Component," Proc. of the IRE, Vol. 47, No. 7, p. 120, July 1959.

HEWLETT-PACKARD
Palo Alto, California

Microwave Test and Measurement Equipment, Signal Generators, Sweep Oscillators, Spectrum Analyzers, Power and Impedance Measuring Instruments, Waveguide.